Fair Oaks Ranch Utilities

7286 Dietz Elkhorn · Fair Oaks Ranch, Texas 78015 · 210-698-0900 · 210-698-7685

2024 Annual Drinking Water Quality Report

A TCEQ Superior recognized water system.

Dear Customer:

We are pleased to present this water quality summary of the Fair Oaks Ranch Utilities (FORU) for the period of January 1 to December 31, 2024.

The Safe Water Drinking Act Amendments of 1996 (SWDA) require utilities to make this annual report to its customers with information regarding our water source, what it contains, and the health risks our testing and treatment is designed to prevent. We hope it advances your understanding of drinking water issues and heightens awareness of the need to protect this precious resource.

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The analysis was made by using data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented on the following pages. We hope this information helps you become more knowledgeable about what is in your drinking water.

During calendar year 2024, FORU pumped 165,479,105 gallons of ground water from the Trinity Aquifer and purchased 403,189,000 gallons of treated surface water from the Guadalupe Blanco River Authority for its 3,296 residential and commercial connections. That represents an average of 473 gallons per connection per day which calculates to 48 gallons per connection per day less than in 2023.

We are committed to providing you the safest, most reliable and cost effective water supply.

Special Notice

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at http://www.epa.gov/safewater/lead. You can view the city's lead service line inventory on our website at https://lead-service-line-inventory-fairoaksranch.hub.arcgis.com

For More Information regarding this report contact: Grant Watanabe, P.E. Director of Public Works at

(210) 698-0900 - gwatanabe@fairoaksranchtx.org Or go directly to the report at: https://fairoaksranchtx.org/wqr2024

En Españo

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono 210-698-0900.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water before treatment include:

Microbial contaminants such as viruses and bacteria, which may come from wastewater treatment plants, septic systems, agricultural livestock operations, and wildlife

Inorganic contaminants such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact Fair Oaks Ranch Utilities at 210-698-0900.

Where do we get our drinking water?

During 2024, Fair Oaks Ranch Utilities relied on Ground and Surface water sources. The Ground Water comes from the Trinity Aquifer (Lower Glen Rose and Cow Creek formations). This ground water is of such quality that the only treatment it receives is chlorine for disinfection. The purchased Surface Water comes from Canyon Lake, which the Guadalupe Blanco River Authority (GBRA) extracts and treats at the Western Canyon Water Treatment Plant.

TCEQ completed an assessment of your source water, and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact Grant Watanabe, P.E., Director of Public Works at 210-698-0900 or via email at gwatanabe@fairoaksranchtx.org.

About the following Pages - The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants. The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.	mrem: millirems per year (a measure of radiation absorbed by the body)
Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.	NA: not applicable
Avg.: Regulatory compliance with some MCLs are based on running annual average of monthly samples.	ND: not detected
Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.	NTU: nephelometric turbidity units (a measure of turbidity)
Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.	pCi/L: picocuries per liter (a measure of radioactivity)
Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.	ppb: micrograms per liter (μ g /L) or parts per billion - or one ounce in 7,350,000 gals of water
Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.	ppm: milligrams per liter (mg/L) or parts per million - or one ounce in 7,350 gals of water
Maximum Residual Disinfectant Level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.	ppq: parts per quadrillion, or picograms per liter (pg/L)
Maximum Residual Disinfectant Level Goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.	ppt: parts per trillion, or nanograms per liter (ng/L)
MFL: million fibers per liter (a measure of asbestos)	Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Test results for Fair Oaks Ranch Utilities (Sampled in distribution system).

Table 1.1 - Inorganic Contaminants

Collection Date	Contaminant	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2023	Barium	0.0342	0.0333 — 0.0342	2	2	ppm	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
2023	Fluoride	0.64	0.52 — 0.64	4	4.0	ppm	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
2024	Nitrate (Measured as Nitrogen)	1	0.06 — 1.09	10	10	ppm	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
2020	Selenium	3.3	0 — 3.3	50	50	ppb	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.

Table 1.2 - Volatile Organic Contaminants

Collection Date	Contaminant	Highest Level Detect- ed	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
2024	Xylenes	0.0032	0 - 0.0032	10	10	ppm	N	Discharge from petroleum factories; Discharge from chemical factories.

Table 1.3 - Disinfectant Residual

Year	Disinfectant	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation	Source of Disinfectant
2024	Chlorine Residual, Free	0.73	0.23-1.60	4	4	ppm	No	Water additive used to control microbes.

Table 1.4 - Disinfection Byproducts

Year	Contaminant	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2024	Total Haloacetic Acids (HAA5)	16	9.3 — 18.2	No Goal	60	ppb	No	By-product of drinking water disinfection
2024	Total Trihalomethanes (TTHM)	57	37.7 — 59.7	No Goal	80	ppb	No	By-product of drinking water disinfection.

Note: The value in the Highest Level Column is the highest average of all HAA5 and TTHM sample results collected at a location over a year.

Table 1.5 - Radioactive Contaminants

Year	Contaminants	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2022	Beta/photon emitters	4.8	0 — 4.8	0	50	pCi/L*	No	Erosion of natural deposits. * EPA considers 50 pCi/L to be the level of concern for bata particles.
2022	Uranium	2.2	1.1 — 2.2	0	30	μg /l	No	Erosion of natural deposits.
2022	Gross Alpha Excluding Radon and Uranium	4	3 — 4	0	15	pCi/L*	No	Erosion of natural deposits

Table 1.6 - Lead and Copper

Date Sampled	Contaminant	MCLG	Action Level (AL)	90 th Percentile	# Sites Over AL	Unit of Measure	Violation	Source of Contaminant
2022	Copper	1.3	1.3	0.295	0	ppm	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
2022	Lead	0	15	3.4	1	ppb	No	Corrosion of household plumbing systems; Erosion of natural deposits.

Table 1.7 - Coliform Bacteria

Maximum Contaminar Level Goal	t Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample.	1	0	0	N	Naturally present in the environment.

Total Coliform: Coliform are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful bacteria may be present.

E-Coli: None Detected

 $Secondary\ and\ Other\ Constituents\ Not\ Regulated-No\ associated\ adverse\ health\ effects.$

Table 1.8 - Unregulated Contaminant

Collection Date	Contaminate	Average Level (μg/L)	Range of Levels Detected (µg/L)	Health Information Summary (recommended, not required in the CCR)
2024	Lithium	16.65	16.3 — 17	This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.

Unregulated Contaminants: Are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminate monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Table 1.9 - Drinking Water Disinfectant Byproduct

Bromodichloromethane, Bromoform, Chloroform, and Dibromochloromethane are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Year	Contaminant	Average Level	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant
2024	Bromodichloromethane	6.5	1.2	12	ppb	Byproduct of drinking water disinfection.
2024	Bromoform	4.7	2.4	7	ppb	Byproduct of drinking water disinfection.
2024	Chloroform	3.3	< 1.0	7	ppb	Byproduct of drinking water disinfection.
2024	Dibromochloromethane	9.6	2.9	16	ppb	Byproduct of drinking water disinfection.

Table 1.10 - Secondary Constituents - No associated adverse health effects.

Year	Constituent	Average Level	Minimum Level	Maximum Level	Secondary Standards	Unit of Measure	Source of Contaminant
2023	Aluminum	< 0.02	< 0.02	< 0.02	0.2	ppm	Abundant naturally occurring element.
2023	Chloride	24.3	24	25	250	ppm	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2017	Copper, Free	0.0292	ND	0.0876	1.0	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.
2023	Iron	0.013	< 0.01	0.015	0.3	ppm	Naturally occurring element; corrosion of household plumbing systems.
2023	Manganese	< 0.001	< 0.001	< 0.001	0.05	ppm	a naturally-occurring element that can be found ubiquitously in the air, soil, and water.
2023	Sulfate	27	22	36	250	ppm	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2023	Total Dissolved Solids	407	393	428	500	ppm	Total dissolved mineral constituents in water.
2023	Zinc	0.0151	0.0105	0.0197	5.0	ppm	Moderately abundant naturally occurring element; used in the metal industry.

 Table 1.11 - Other Constituents Not Regulated—No associated adverse health effects.

Year	Constituent	Average Level	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant
2023	Bicarbonate	358	350	362	ppm	Corrosion carbonate rocks such as limestone.
2023	Calcium	83.5	80.4	87.5	ppm	Abundant naturally occurring element.
2023	Total Hardness (AS CAC03)	319.3	310	325	ppm	Naturally occurring calcium and magnesium.
2023	Magnesium	26.8	25.1	29.6	ppm	Abundant naturally occurring element.
2023	Nickel	0.0023	0.0023	0.0025	ppm	Erosion of natural deposits.
2023	Potassium	1.85	1.58	2.3	ppm	Naturally occurring in various minerals; runoff from fertilizer use.
2023	Sodium	13.6	11.6	17.6	ppm	Erosion of natural deposits; byproduct of oil field activity.
2023	Total Alkalinity	293.6	287	297	ppm	Naturally occurring soluble mineral salts.

Test results for the GBRA-Western Canyon Water Treatment Plant (Canyon Water Treatment Plant)

Fair Oaks Ranch Utilities purchases water from the GBRA Western Canyon Water Supply, which provides treated surface water from Canyon Reservoir located in Comal County.

Table 2.1 - Inorganic Contaminants

Year	Contaminant	Highest Level or	Range of Individual	MCLG	MCL	Unit of	Violation	Source of Contaminant
2024	Barium	0.0255	0.0255 — 0.0255	2	2	ppm	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
2024	Fluoride	0.2	0.19 —0.19	4	4.0	ppm	No	Erosion of natural deposits; Water additive which pro-
2024	Nitrate as N	0.06	0.06 — 0.06	10	10	ppm	No	Runoff from fertilizer use, leaching from septic tanks,

Volatile Organic Contaminants - None Detected

Synthetic Organic Contaminants - None Detect-

Unregulated Contaminants: Are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminate monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Table 2.2 - Maximum Residual Disinfection Level

Year	Contaminant	Average	Range of Detects	MRDL	Unit of Measure	Source of Contaminant
2024	Chlorine	.73	0.23 — 1.60	4	ppm	Byproduct of drinking water disinfection.

Table 2.3 - Western Canyon Water Treatment Plant Turbidity

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

Year	Contaminant	Highest Single Measurement	Lowest Monthly % of Samples Meeting Limits	Turbidity Limits	Unit of Measure	Source of Contaminant
2024	Turbidity	0.08 NTU	100	0.3	NTU	Organic particles—soil runoff.

Table 2.4 - Disinfection By-Products - Highest Level is highest average of all sample results at a location over a year

Year Year	Disinfection By– Product	Highest Level	Range of Individual	MCLG	MCL	Unit of	Violation	Source of Contaminant
2024	HAA5	14	14.3 — 14.3	No Goal	60	ppm	No	By-product of drinking water disinfection.
2024	ТТНМ	47	47.2 — 47.2	No Goal	80	ppm	No	By-product of drinking water disinfection.

Fair Oaks Ranch Utilities 7286 Dietz Elkhorn Fair Oaks Ranch, TX 78015-4707

